EXERCISES [MAI 2.13-2.14]

POLYNOMIAL MODELS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)
(i) $\quad u_{n}=13+(n-1) \times 5=5 n+8$
(ii) $y=5 x+8$
(b) the gradient of the line is the common difference of the sequence.
(c) $5 \times(-1)+8=3, \quad 5 \times 10+8=58,5 \times(0.2)+8=9$: All three points line on the line
(d) Although all the points lie on the line, only 58 is a term of the sequence (it is the only one for which x is a positive integer.
2. (a) $m_{A D}=\frac{24}{8}=3$
$P-2=3(Q-2) \Rightarrow P=3 Q-4$
(b) $\quad P=a Q+b . \quad$ For $\mathrm{A}(2,2): \quad 2 a+b=2$

For $\mathrm{D}(10,26): 10 a+b=26$
Hence: $a=3, b=-4$, So $P=3 Q-4$
(c) For $B(4,8)$: $3 \times 4-4=8$, so it lies on the line.

For $C(6,14)$: $\quad 3 \times 6-4=14$, so it lies on the line.
3. (a) $y=2 x^{2}+3 x+7$
(b) $y=2(x-1)(x-5) \Rightarrow y=2\left(x^{2}-6 x+5\right) \Rightarrow y=2 x^{2}-12 x+10$
(c) $y=2(x-3)^{2}+5 \Rightarrow y=2\left(x^{2}-6 x+9\right)+5 \Rightarrow y=2 x^{2}-12 x+23$
(d) $a(0-3)^{2}+2=20 \Rightarrow 9 a+2=20 \Rightarrow 9 a=18 \Rightarrow a=2$

Hence, $y=2(x-3)^{2}+2 \Rightarrow y=2 x^{2}-12 x+20$
4. (a) $q=-2, r=4$ or $q=4, r=-2$
(b) $x=1$
(c) substituting $(0,-4)$ into the equation: $-4=-8 p \Rightarrow p=\frac{4}{8}\left(=\frac{1}{2}\right)$
(d) $\quad f(x)=\frac{1}{2}(x+2)(x-4)=\frac{1}{2}\left(x^{2}-2 x-8\right)=\frac{1}{2} x^{2}-x-4$
5. (a) METHOD 1: Discriminant $=0 \Rightarrow q^{2}-4(4)(25)=0 \Rightarrow q^{2}=400 \Rightarrow q=20, q=-20$

METHOD 2: Using factorizing: $(2 x-5)^{2}$ or $(2 x+5)^{2} \Rightarrow q=20, q=-20$
(b) $x=2.5$
(c) $(0,25)$
(d)

6. (a) Since the vertex is at $(3,1)$
$h=3, k=1$
(b) $x=3$
(c) $(5,9)$ is on the graph $\Rightarrow 9=a(5-3)^{2}+1 \Rightarrow 9=4 a+1 \Rightarrow a=2$
(d) $y=2(x-3)^{2}+1=2\left(x^{2}-6 x+9\right)+1=2 x^{2}-12 x+19$
7. (a) $h=3 k=2$
(b) $y \leq 2$
(c) due to symmetry: $f(4)=a$, hence $x=4$.
(d) $f(x)=-(x-3)^{2}+2=-x^{2}+6 x-9+2=-x^{2}+6 x-7$
8. (a) (i) $h=-1$ (ii) $k=2$
(b) $a(1+1)^{2}+2=0 \Rightarrow a=-0.5$
(c) $y=-0.5(x+3)(x-1)$
(d) $y=-0.5(x+3)(x-1)=-0.5\left(x^{2}+2 x-3\right)=-0.5 x^{2}-x+1.5$ OR $y=-0.5(x+1)^{2}+2=-0.5\left(x^{2}+2 x+1\right)+2=-0.5 x^{2}-x+1.5$
9. (a) (i) $p=1, q=5($ or $p=5, q=1)$
(ii) $x=3$
(b) For $x=3, y=-4$, hence $f(x)=(x-3)^{2}-4 \quad(h=3, k=-4)$
(c) $f(x)=(x-1)(x-5)=x^{2}-6 x+5$
(d) $f(x)<0 \Rightarrow 1<x<5$
10. (a) (i) $m=3$ (ii) $p=2$
(b) $0=d(1-3)^{2}+2 \Rightarrow d=-\frac{1}{2}$
(c) $f(x)=-\frac{1}{2}(x-3)^{2}+2=-\frac{1}{2}\left(x^{2}-6 x+9\right)+2=-\frac{1}{2} x^{2}+3 x-\frac{5}{2}$
(d) $\quad f(x)=-\frac{1}{2}(x-1)(x-5)$
11. (a) $p=-2 \quad q=4$ (or $p=4, q=-2$)
(b) $y=a(x+2)(x-4)$
$8=a(6+2)(6-4)$
$8=16 a$
$a=\frac{1}{2}$
(c) $y=\frac{1}{2}(x+2)(x-4)=\frac{1}{2}\left(x^{2}-2 x-8\right)=\frac{1}{2} x^{2}-x-4$
(d) (i) $x<-2$ or $x>4$. $\begin{array}{ll}\text { (ii) } x=5\end{array}$
12. (a) $f(x)=a(x+4)(x-6)$

For $x=0, \mathrm{y}=240:-24 a=240 \Rightarrow a=-10$
$f(x)=-10(x+4)(x-6)$
(b) Vertex at $x=1, y=-10(1+4)(1-6)=250$
$f(x)=-10(x-1)^{2}+250$
(c) $y=-10(x-1)(x-1)+250=240+20 x-10 x^{2}$

OR $y=-10\left(x^{2}-2 x+1\right)+250=240+20 x-10 x^{2}$
13. (a) substituting $(-4,3): 3=a(-4)^{2}+b(-4)+c \Rightarrow 16 a-4 b+c=3$
(b) $36 a+6 b+c=3,4 a-2 b+c=-1$
(c) $\quad a=0.25, b=-0.5, c=-3$ (accept fractions)
$f(x)=0.25 x^{2}-0.5 x-3$
(d) Vertex (min with GDC) at $(1,-3.25)$
$f(x)=0.25(x-1)^{2}-3.25$
14. (a) $a+b+c=4$
$4 a+2 b+c=7$
$9 a+3 b+c=14$
(b) $P=2 Q^{2}-3 Q+5$
15. (a) $4 a-2 b+c=0$
$a+b+c=0$
$4 a+2 b+c=12$
Hence, $P=3 Q^{2}+3 Q-6$
(b) $\quad P=a(Q+2)(Q-1)$

Since $(2,12)$ lies on the line: $a(2+2)(2-1)=12 \Rightarrow 4 a=12 \Rightarrow a=3$
Hence, $P=3(Q+2)(Q-1)=3\left(Q^{2}+Q-2\right)=3 Q^{2}+3 Q-6$
16. (a) (i) Due to symmetry the vertex is $\mathrm{V}(3,10)$, (ii) P-intercept $(0,1)$
(a) $0 a+0 b+c=1$
$9 a+3 b+c=10$
$36 a+6 b+c=1$
Hence, $P=-Q^{2}+6 Q+1$
(b) $P=a(Q-3)^{2}+10$

Since $(0,1)$ lies on the line: $9 a+10=1 \Rightarrow a=-1$
Hence, $P=-(Q-3)^{2}+10=-\left(Q^{2}-6 Q+9\right)+10=-Q^{2}+6 Q+1$
17. (a) $-8=-8 p+4 q-2 r$,
$-2=p+q+r$,
$0=8 p+4 q+2 r$
(b) $p=1, q=-1, r=-2$
(c) $f(x)=x^{3}-x^{2}-2 x$,

Roots: $x=-1, x=0, x=2$
(d) $-1 \leq x \leq 0$ or $x \geq 2$.
18. (a)

x	y	Model $\mathbf{L}_{\mathbf{1}}$		Model $\mathbf{L}_{\mathbf{2}}$	
		$y_{1}=3 x$	$\left(y-y_{1}\right)^{2}$	$y_{2}=3.4 x-1$	$\left(y-y_{2}\right)^{2}$
$\mathbf{1}$	$\mathbf{3}$	3	0	2.4	0.36
$\mathbf{2}$	$\mathbf{5}$	6	1	5.8	$\mathbf{0 . 6 4}$
$\mathbf{3}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{0}$	$\mathbf{9 . 2}$	0.04
$\mathbf{4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1}$	$\mathbf{1 2 . 6}$	$\mathbf{0 . 1 6}$

(b) Although L_{1} passes through two of the points, the model L_{2} is closer to the points,
(c) The regression line is $y=3.4 x-1$, that is the line L_{2}.

B. Paper 2 questions (LONG)

19. (a)
(i) $m_{A B}=\frac{6}{2}=3$
(ii) $y-5=3(x-1) \Rightarrow y=3 x+2$
(b) The point $\mathrm{C}(6,20)$ also lies on the line since
$3 \times 6+2=20$
Hence the three points lie on the same line.
(c) The point $\mathrm{D}(5,15)$ does not line on the line since
$3 \times 5+2=17 \neq 15$
(d) It is a satisfactory model since it passes through 3 out of the four points, and it is close enough to the fourth point.
(e) $y=2.83 x+2.14$
(f)

x	y	Estimations		Squared Residuals	
		y_{1} by line AB)	y_{2} by line L	$\left(y-y_{1}\right)^{2}$	$\left(y-y_{2}\right)^{2}$
1	5	5	4.97	0	0.0009
3	11	11	10.63	0	0.1369
5	15	17	16.29	4	0.5041
6	20	20	19.12	0	0.7744
SS $_{\text {res }}=$ SUM OF THE SQUARED RESIDUALS \rightarrow					4
1.4163					

(g) Although the first model passes through 3 out of the four points, the second model is much better. It is totally closer to the points since, since $\mathrm{SS}_{\text {res }}$ is smaller.
20. (a) (i) $P=3.80 Q+11.6$
(ii) $P=0.839 Q^{2}-2.08 Q+17.5$
(iii) $P=-0.376 Q^{3}+4.79 Q^{2}-12.4 Q+21.4$
(b) exact value $=20$,

Linear model value $=11.6$, Percentage error $=\left|\frac{11.6-20}{20}\right| \times 100 \%=42 \%$
Quadratic model value $=17.5$, Percentage error $=\left|\frac{17.5-20}{20}\right| \times 100 \%=12.5 \%$
Cubic model value $=21.4$, Percentage error $=\left|\frac{21.4-20}{20}\right| \times 100 \%=7 \%$
(c) The cubic model seems to be much closer to the given points.
(d) For $Q=8$, the cubic model gives $P=36.2$. This seems to be the most reliable prediction. (The first two models give 42 and 54.6 respectively)

