EXERCISES [MAI 2.13-2.14]

POLYNOMIAL MODELS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (i) $u_n = 13 + (n-1) \times 5 = 5n+8$ (ii) y = 5x+8(a) the gradient of the line is the common difference of the sequence. (b) $5 \times (-1) + 8 = 3$, $5 \times 10 + 8 = 58$, $5 \times (0.2) + 8 = 9$: All three points line on the line (c) Although all the points lie on the line, only 58 is a term of the sequence (d) (it is the only one for which x is a positive integer. (a) $m_{AD} = \frac{24}{8} = 3$ 2. $P-2=3(Q-2) \Longrightarrow P=3Q-4$ (b) P = aQ + b. For A(2,2): 2a + b = 2For D(10,26): 10a + b = 26Hence: a = 3, b = -4, So P = 3Q - 4For B(4,8): $3 \times 4 - 4 = 8$, so it lies on the line. (c) For C(6,14): $3 \times 6 - 4 = 14$, so it lies on the line. $y = 2x^2 + 3x + 7$ 3. (a) $y = 2(x-1)(x-5) \Rightarrow y = 2(x^2-6x+5) \Rightarrow y = 2x^2-12x+10$ (b) (c) $v = 2(x-3)^2 + 5 \Rightarrow v = 2(x^2 - 6x + 9) + 5 \Rightarrow v = 2x^2 - 12x + 23$ (d) $a(0-3)^2 + 2 = 20 \Rightarrow 9a + 2 = 20 \Rightarrow 9a = 18 \Rightarrow a = 2$ Hence, $y = 2(x-3)^2 + 2 \implies y = 2x^2 - 12x + 20$ (a) q = -2, r = 4 or q = 4, r = -24. (b) x = 1substituting (0, -4) into the equation: $-4 = -8p \implies p = \frac{4}{8} \left(= \frac{1}{2} \right)$ (c) (d) $f(x) = \frac{1}{2}(x+2)(x-4) = \frac{1}{2}(x^2-2x-8) = \frac{1}{2}x^2-x-4$ **METHOD 1:** Discriminant = $0 \Rightarrow q^2 - 4(4)(25) = 0 \Rightarrow q^2 = 400 \Rightarrow q = 20, q = -20$ **METHOD 2:** Using factorizing: $(2x - 5)^2$ or $(2x + 5)^2 \Rightarrow q = 20, q = -20$ 5. (a) x = 2.5(b) (0, 25)(c) (d)

6. (a) Since the vertex is at (3, 1)

$$h = 3$$
, $k = 1$
(b) $x = 3$
(c) $(5, 9)$ is on the graph $\Rightarrow 9 = a(5-3)^2 + 1 \Rightarrow 9 = 4a + 1 \Rightarrow a = 2$
(d) $y = 2(x-3)^2 + 1 = 2(x^2 - 6x + 9) + 1 = 2x^2 - 12x + 19$

7. (a)
$$h=3$$
 $k=2$
(b) $y \le 2$
(c) due to symmetry: $f(4)=a$, hence $x = 4$.
(d) $f(x) = -(x-3)^2 + 2 = -x^2 + 6x - 9 + 2 = -x^2 + 6x - 7$

8. (a) (i)
$$h = -1$$
 (ii) $k = 2$
(b) $a(1+1)^2 + 2 = 0 \Rightarrow a = -0.5$

(c)
$$u(1+1) + 2 = 0 \implies u = 0$$

(c) $y = -0.5 (x+3)(x-1)$

(d)
$$y = -0.5 (x+3)(x-1) = -0.5 (x^2+2x-3) = -0.5x^2-x+1.5$$

OR $y = -0.5(x+1)^2 + 2 = -0.5(x^2+2x+1) + 2 = -0.5x^2-x+1.5$

9. (a) (i)
$$p = 1, q = 5$$
 (or $p = 5, q = 1$)
(ii) $x = 3$
(b) For $x = 3, y = -4$, hence $f(x) = (x - 3)^2 - 4$ ($h = 3, k = -4$)
(c) $f(x) = (x - 1)(x - 5) = x^2 - 6x + 5$
(d) $f(x) < 0 \implies 1 < x < 5$

10. (a) (i)
$$m = 3$$
 (ii) $p = 2$
(b) $0 = d(1-3)^2 + 2 \Rightarrow d = -\frac{1}{2}$
(c) $f(x) = -\frac{1}{2} (x-3)^2 + 2 = -\frac{1}{2} (x^2 - 6x + 9) + 2 = -\frac{1}{2} x^2 + 3x - \frac{5}{2}$
(d) $f(x) = -\frac{1}{2} (x-1) (x-5)$

11. (a)
$$p = -2$$
 $q = 4$ (or $p = 4, q = -2$)
(b) $y = a(x+2)(x-4)$
 $8 = a(6+2)(6-4)$
 $8 = 16a$
 $a = \frac{1}{2}$
(c) $y = \frac{1}{2}(x+2)(x-4) = \frac{1}{2}(x^2 - 2x - 8) = \frac{1}{2}x^2 - x - 4$
(d) (i) $x < -2$ or $x > 4$. (ii) $x = 5$

12. (a)
$$f(x) = a(x+4)(x-6)$$

For $x = 0$, $y = 240: -24a=240 \implies a = -10$
 $f(x) = -10 (x+4)(x-6)$

(b) Vertex at
$$x = 1$$
, $y = -10(1+4)(1-6) = 250$
 $f(x) = -10(x-1)^2 + 250$

(c)
$$y = -10(x-1)(x-1) + 250 = 240 + 20x - 10x^2$$

OR $y = -10(x^2 - 2x + 1) + 250 = 240 + 20x - 10x^2$

13. (a) substituting (-4, 3):
$$3 = a(-4)^2 + b(-4) + c \Rightarrow 16a - 4b + c = 3$$

- (b) 36a + 6b + c = 3, 4a 2b + c = -1
- (c) a = 0.25, b = -0.5, c = -3 (accept fractions) $f(x) = 0.25x^2 - 0.5x - 3$
- (d) Vertex (min with GDC) at (1, -3.25) $f(x) = 0.25(x-1)^2 - 3.25$
- 14. (a) a+b+c=44a+2b+c=79a+3b+c=14(b) $P=2Q^2-3Q+5$
- 15. (a) 4a-2b+c=0a+b+c=04a+2b+c=12Hence, $P=3Q^2+3Q-6$
 - (b) P = a(Q+2)(Q-1)Since (2,12) lies on the line: $a(2+2)(2-1) = 12 \Rightarrow 4a = 12 \Rightarrow a = 3$ Hence, $P = 3(Q+2)(Q-1) = 3(Q^2 + Q - 2) = 3Q^2 + 3Q - 6$
- 16. (a) (i) Due to symmetry the vertex is V(3,10), (ii) *P*-intercept (0,1) (a) 0a+0b+c=1 9a+3b+c=10 36a+6b+c=1Hence, $P = -Q^2 + 6Q + 1$
 - (b) $P = a(Q-3)^2 + 10$ Since (0,1) lies on the line: $9a + 10 = 1 \Rightarrow a = -1$ Hence, $P = -(Q-3)^2 + 10 = -(Q^2 - 6Q + 9) + 10 = -Q^2 + 6Q + 1$

17. (a)
$$-8 = -8p + 4q - 2r$$
,
 $-2 = p + q + r$,
 $0 = 8p + 4q + 2r$

- (b) p = 1, q = -1, r = -2
- (c) $f(x) = x^3 x^2 2x$, Roots: x = -1, x = 0, x = 2
- (d) $-1 \le x \le 0$ or $x \ge 2$.

18.	(a)
10.	(4)

x	У	Model L ₁		Model L ₂	
		$y_1 = 3x$	$(y-y_1)^2$	$y_2 = 3.4x - 1$	$(y-y_2)^2$
1	3	3	0	2.4	0.36
2	5	6	1	5.8	0.64
3	9	9	0	9.2	0.04
4	13	12	1	12.6	0.16
		SUM→	2	SUM→	1.2

- (b) Although L_1 passes through two of the points, the model L_2 is closer to the points,
- (c) The regression line is y = 3.4x 1, that is the line L₂.

B. Paper 2 questions (LONG)

19. (a) (i)
$$m_{AB} = \frac{6}{2} = 3$$
 (ii) $y - 5 = 3(x - 1) \Rightarrow y = 3x + 2$

(b) The point C(6,20) also lies on the line since $3 \times 6 + 2 = 20$

Hence the three points lie on the same line.

(c) The point D(5,15) does not line on the line since

 $3 \times 5 + 2 = 17 \neq 15$

- (d) It is a satisfactory model since it passes through 3 out of the four points, and it is close enough to the fourth point.
- (e) y = 2.83x + 2.14
- (f)

x y	Estimations		Squared Residuals		
	У	y_1 by line AB)	y_2 by line L	$(y-y_1)^2$	$(y-y_2)^2$
1	5	5	4.97	0	0.0009
3	11	11	10.63	0	0.1369
5	15	17	16.29	4	0.5041
6	20	20	19.12	0	0.7744
SS_{res} = SUM OF THE SQUARED RESIDUALS \rightarrow		4	1.4163		

(g) Although the first model passes through 3 out of the four points, the second model is much better. It is totally closer to the points since, since SS_{res} is smaller.

20. (a) (i) P = 3.80Q + 11.6

(ii) $P = 0.839Q^2 - 2.08Q + 17.5$

(iii)
$$P = -0.376Q^3 + 4.79Q^2 - 12.4Q + 21.4$$

(b) exact value = 20,

Linear model value = 11.6, Percentage error = $\left|\frac{11.6 - 20}{20}\right| \times 100\% = 42\%$

Quadratic model value = 17.5, Percentage error = $\left|\frac{17.5 - 20}{20}\right| \times 100\% = 12.5\%$

Cubic model value = 21.4, Percentage error = $\left|\frac{21.4 - 20}{20}\right| \times 100\% = 7\%$

- (c) The cubic model seems to be much closer to the given points.
- (d) For Q = 8, the cubic model gives P = 36.2. This seems to be the most reliable prediction. (The first two models give 42 and 54.6 respectively)